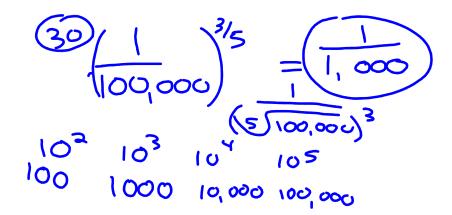

Warm Up



Simplify the expression. 3) $6\sqrt[3]{5} + 4\sqrt[3]{625}$

4) Write in simplest form.

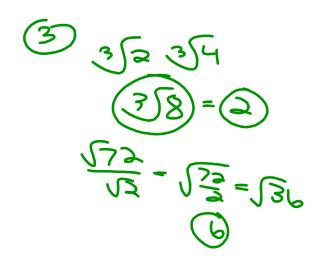
$$\frac{4}{(-4)^{5}} (-4)^{5} = \frac{1}{(-3)^{4}}$$

$$\frac{1}{(-4)^{5}} = \frac{1}{(-1)^{4}}$$

$$\frac{1}{(-1)^{5}} = \frac{1}{(-1)^{4}}$$

$$\frac{1}{(-1)^{5}} = \frac{1}{(-2)^{5}}$$

$$\frac{1}{(-2)^{4}} = \frac{1}{(-3)^{5}}$$


$$\frac{3^{3/4} \cdot 3^{5/4}}{3^{8/4}} = 3^{3} = 9$$

$$\frac{3^{3/4} \cdot 3^{5/4}}{4^{1/4}} = 4^{1/4} = 2$$

$$\frac{3}{3} + \frac{1}{3} \cdot 3$$

$$\frac{3}{4} + \frac{1}{3} \cdot 3$$

$$\begin{array}{c} (x^{2})^{4} = x^{1/2} = \sqrt{x} \\ (x^{2})^{4} = x^{1/2} = x$$

1405 + 15 1415 + 15 215 + 15 10 5/32 - 3 5/2 10 5/16 6/2 - 3 5/2 10・2 5/2 - 3 5/2 7 17 5/2

3) 7354+43128 722732 +4364352 7.332 +4.4364352 2132 +4.4352

>3x 4x 420x

*Evaluation flashcards at your table.

Mad Minute Practice WS

- *Let's look at few
 - -negative exponents
 - -negative inside the parentheses
 - -negative without parentheses

Homework Questions

6.3 Perform Function Operations & Compositions

Objectives:

- Perform operations with functions including composition of functions
- Determine how domain and range are affected by function operation

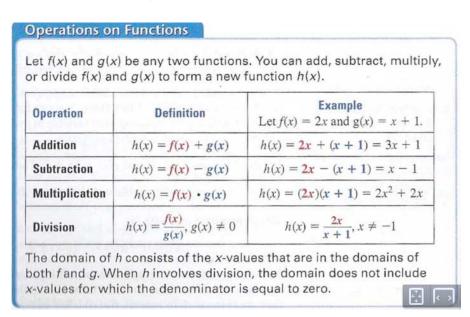
Operations on Functions

Let f(x) and g(x) be any two functions. You can add, subtract, multiply, or divide f(x) and g(x) to form a new function h(x).

Operation	Definition	Example Let $f(x) = 2x$ and $g(x) = x + 1$.
Addition	h(x) = f(x) + g(x)	h(x) = 2x + (x+1) = 3x + 1
Subtraction	h(x) = f(x) - g(x)	h(x) = 2x - (x+1) = x - 1
Multiplication	$h(x) = f(x) \cdot g(x)$	$h(x) = (2x)(x + 1) = 2x^2 + 2x$
Division	$h(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$h(x) = \frac{2x}{x+1}, x \neq -1$

The domain of h consists of the x-values that are in the domains of both f and g. When h involves division, the domain does not include x-values for which the denominator is equal to zero.

Operations on Functions


Let $f(x)=-2x^{2/3}$ and $g(x)=7x^{2/3}$ Find the following.

1.
$$f(x) + g(x)$$

 $-2x^{3/3} + 7x^{2/3}$
 $5x^{3/3}$

2.
$$f(x) - g(x)$$

 $-2 \times ^{2/3} - 7 \times ^{2/3}$
 $-9 \times ^{2/3}$

6.3 Perform Function Operations & Compositions

How are domain and range affected by function operations?

6.3 Perform Function Operations & Compositions

An Extra Rule for Division...

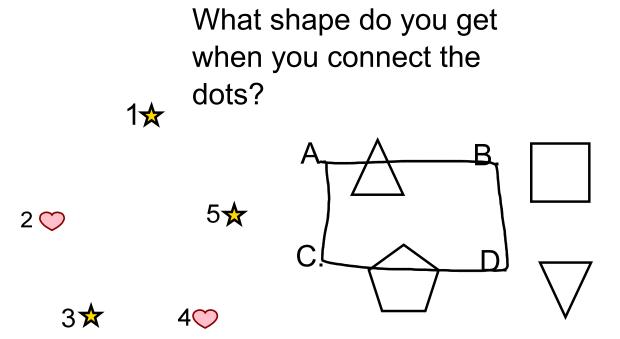
$$\frac{(f/g)(x)=f(x)/g(x)}{f(x)=\sqrt{x}} \qquad g(x)\neq 0$$

$$f(x)=\sqrt{x} \qquad g(x)=\sqrt{3-x}$$

$$DD: \qquad \frac{\sqrt{x}}{\sqrt{3-x}} = \sqrt{\frac{x}{3-x}}$$

Operations on Functions

Let f(x) = 3x and $g(x) = x^{1/5}$. Find the following.

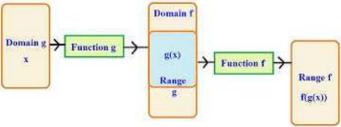

1.
$$f(x) \cdot g(x)$$

 $3 \times 1 \cdot 1 \times 1 = 6$
 $5 \cdot 1 + \frac{1}{5} = \frac{6}{5}$
 $3 \times 1 \times 1 = \frac{6}{5}$

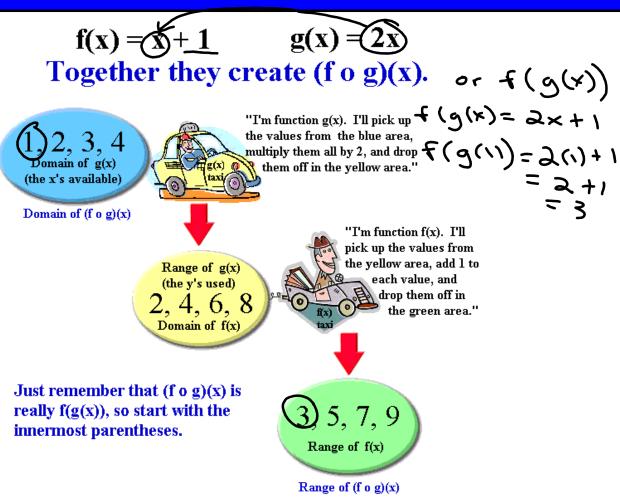
TOYO

Find a. (f+g)(x) b. (f-g)(x) c. (fg)(x) d. (f/g)(x)

1.
$$f(x)=x^2 +5$$
, $g(x)=1-x$


(a)
$$+(x)+9(x)$$

 $(x^{2}+x^{2}-x+6)$
(b) $(x^{2}+x)(x-x)$
 $(x^{2}-x+6)$
 $(x^{2}+x)(x-x)$
 $(x^{2}+x)(x-x)$
 $(x^{2}+x)(x-x)$


Composition of Functions

What is a composition?

Composition of Functions

$$-\frac{x(x)-2x-1}{2} = \frac{3(x)-2x-1}{2} = \frac{3(x)-2x$$

$$\begin{array}{ll}
(10) & g(f(x)) & g(x) = x^{2} + x & f(x) = 9 - x \\
(9 - x) & + (9 - x) \\
(9 - x) & (9 - x) & \\
8 & - 18x + x^{2} + 9 - x \\
x^{2} - 19x + 90
\end{array}$$

Composition WS

COMPOSITION OF FUNCTIONS Let $f(x) = 4x^{-5}$ and $g(x) = x^{3/4}$. Perform the indicated operation and state the domain.

28. f(g(x))

29. g(f(x))

30. f(f(x))

31. g(g(x))

Let f(x) = 3x - 8 and $g(x) = 2x^2$. Find the following.

8. *g*(*f*(5))

9. f(g(5))

10. f(f(5))

11. g(g(5))

12. Let $f(x) = 2x^{-1}$ and g(x) = 2x + 7. Find f(g(x)), g(f(x)), and f(f(x)).

Then state the domain of each composition.

8 9(+(g)) 2(3(g)-8)² 2(15-8)² 2(7)² 2(49)

f(g(s)) 3(2(s)) - 8 3(2(2s)) - 8 3(so) - 8 150-8 COMPOSITION OF FUNCTIONS Let $f(x) = 4x^{-5}$ and $g(x) = x^{3/4}$. Perform the indicated operation and state the domain.

- **28.** f(g(x))
- **29.** g(f(x))
- **30.** f(f(x)) **31.** g(g(x))

Let f(x) = 3x - 8 and $g(x) = 2x^2$. Find the following.

- **8.** g(f(5))
- **9.** f(g(5)) **10.** f(f(5)) **11.** g(g(5))
- 12. Let $f(x) = 2x^{-1}$ and g(x) = 2x + 7. Find f(g(x)), g(f(x)), and f(f(x)). Then state the domain of each composition.

*Flash Cards

Mad Minute Quiz

Page 432 #22-25, 28-37, 39, 44(don't

skip), 45 (don't skip)

★ Compostion WS

Mad Minute Quiz Thursday